KB133 How do I mount the 44 pin edge connector boards?

My question is: How do I mount the PM42? Do I need a special housing in order to mount it under table? It appears to me that mounting it flush against a surface would prevent, or make it extremely difficult, to attach the 44-pin connector. Digitrax manufactures three devices which have a 44-pin connector. These are the BDL168 (and its predecessor the BDL16), the SE8C and the PM42 (and its predecessor, the PM4). These best approach to mounting these devices is to screw the connector directly to the wiring panel board. Drill mounting holes in the end of the 44-pin ...

KB904 BDL16x Series-Detection-Planning Worksheet

RX4 / BDL168 Hookup Worksheet BDL168 #_______ Address:________ Description______________________________________________________ Aux Power:_______ Standard BDL162 Configuration Advanced Detection Section Wiring: Transponding Method________________________________   Section Pin # Named Detection Section Description ZONE A Power In 1       1 2     Power 2 3     District 3 4       4 5     In Out Alternate Zone Comments                                             ZONE B Power In 6       5 7     Power 6 8     District ...

KB25 PM42, BDL168, and SE8C breakout boards

44 pin connectors with screw terminals were originally designed by a company called LWH3.  Their products allow you to install the PM42, BDL168, and SE8C without having to solder to the 44 pin connector.  The product line was sold to Accu-Lites.  These products are available online directly from Accu-Lites at www.acculites.com              

KB48 BDL168 - Option Switch Table

The option switches and settings you can use to customize your BDL168 are indicated in the table below. These option switches on your BDL168 are set up using a Digitrax throttle's SWITCH commands. (This can only be done with a Digitrax LocoNet throttle or equivalent software). SWITCH mode is normally used for operating turnouts by issuing closed ("c") or thrown ("t") commands. In the case of your BDL168, each switch address is a BDL168 option switch. The following table shows what each OpSw is used for when it is set for thrown or closed. Factory settings are indicated by shaded ...

KB47 BDL168 - How to Change the Option Switches

How to read back and change BDL168 Option Switches (OpSw): 1. Power up your BDL168 and connect it to LocoNet. 2. Connect a DT series or UT1, UT2 Digitrax throttle to one of the the BDL168's LocoNet connectors. NOTE: The UT4 will not work as its design is different for the original UT series throttles.3. Press the switch behind the red option LED for about 1 second, then release it. The red option and green ID LEDs will flash alternately to let you know that you are in option switch setup mode. 4. Go into SWITCH mode on your throttle. ...

KB688 What will it take to install Digitrax Transponding on my layout?

1.  Install BDL16 series occupancy detector(s).  BDL16, BDL162 and BDL168 occupancy detectors can be used together on the same layout.2.  Add RX4 transponder receivers to the zones you want to set up for transponding. (You won't need to cover every detection section on the railroad for effective coverage and reporting. Some areas will be detection only sections while others will have full transponding as needed.)  Use either two RX4s with your BDL168 to set up 8 transponding zones or use one RX4 if you only need 4 transponding zones.3.  All current production Digitrax decoders are transponder equipped. If you have decoders ...

KB50 BDL168 - Using with Power Managers

The BDL168 is designed to be used with power management devices such as PM42. The BDL168 is designed to operate “downstream” of the Digitrax boosters and power management devices. The BDL168 is the "last" device in the chain from booster to power manager to BDL168. It is connected directly to the track detection section. There should be no other connections to any detection section that will draw track power or the detection section will always show occupied. If a device is used to switch off power feeding the BDL168 and the track it is connected to, for example, a PM42 ...

KB51 BDL168 - Using In a Reversing Loop

The BDL168 can be used as an autoreversing unit for return loops. One of the BDL168 Detection Sections is connected to the non-reversing area, with the balance of the detection connections being made within the reversing area. Here is a wiring example: Note that an auto-reverse section can only use detection sections that are contained in a BDL168 zone that is correctly set up for auto-reversing.

KB53 BDL168 - Outdoor Layouts

Reducing Sensitivity for Outdoor Layouts Outdoor layouts may require reducing sensitivity to allow for more accurate occupancy reporting through the BDL168. Resistors are connected between the detection zone and the zone common from the blue connector to reduce sensitivity. A 1KOhm resistor will reduce the sensitivity by 1/2. A 100 Ohm resistor will reduce sensitivity by a factor of 10.

KB54 BDL168 - Troubleshooting Checklist

Here are several things to check if you are having trouble with the BDL168: Proper Wiring Be sure that you have NOT connected pin 11 to pin M, as this can prevent proper LocoNet communication. Check to make sure not wires are touching adjacent pins.  Follow the wiring diagram closely. Packet Reception Be sure the green ID LED is ON & is “winking” off about every 2 seconds. This means that correctly formatted DCC packets are being decoded from the left most (Railsync) pin of the RJ12 LocoNet socket. For DCC detection, the same DCC packet signal that drives the ...

KB55 RR&Co Settings for BDL168 & BXP88 Operation

Railroad & Co. is a suite of computer programs for both digitally and conventionally controlled model railroads. The BDL168 needs to have several Option Switches changed for proper operation with Railroad & Co.'s Train Controller program. Our recommendations are based upon experience with earlier versions of the program: Suggested BDL168 Settings for Railroad & Co. (from European users): OpSw9 = Closed (No message sent if un-powered) OpSw36 = Closed (Ignore GPON) OpSw37 = Closed (Long delays for sensors) OpSw38 = Closed (Extra long delay for sensors) OpSw39 = Closed (Verbose mode enabled) OpSw43 = Closed (Filter for transponding disabled) OpSw45 ...

KB56 BDL168 - 44-Pin Connector Pinout Configuration

BDL168 Pin Out Configuration: Notes: 1) All connector pins are paired top (component side of the BDL168) and bottom (solder side of the BDL168) except 11/M and 12/N. For 6 Amp current rating with 3 Amp connector pins, track/zone wires must be connected to both pin pairs: e.g. Zone A = pins 1 & A (See Figure below): 2) Letters G, I, O & Q are not used as pin designations on the connector. 3) Power connections should be made to a power supply dedicated to BDL168 use only. Multiple BDL168 units can be supplied by a single shared supply ...

KB57 BDL168 - Connecting to a "Common Rail" Wired Layout

Common Rail Wiring Many older model railroads use Common Rail wiring because they were initially wired to operate with electrical toggle switches. Conversion to DCC is possible with Common Rail, but it is not recommended. Whole layout common rail is a method of wiring layouts where power districts and their boosters are electrically connected using a common rail or common power bus return wire. Whole layout common rail wiring is a disadvantage when it comes to detection systems since detectors cannot independently monitor whether zone power is on or off so they can't tell whether occupancy detection is working in ...

KB58 BDL168 - Connecting to a "Direct Home" Wired Layout

Direct Home Layout Wiring Digitrax strongly recommends direct home wiring where each power district and its booster are electrically isolated. This method of wiring has safety advantages and makes troubleshooting problems easier. In addition, direct home wiring makes detection work more prototypically. With direct home wiring, the BDL168 can determine and indicate whether any of its 4 zones is powered or not (possibly short-circuited) even when there is nothing on the rails in the detection sections. The BDL168 factory-set logic causes the detection sections to show "occupied" if the associated zone's power is off (because in this case, detection is ...

KB59 BDL168 - Terminology

Here are some terms that you might find useful as you work with the BDL168. Direct home wiring is a layout wiring method where each power district and its booster is electrically isolated. The track within each power district uses a "common return" wiring method for occupancy detection and/or power management. Direct home wiring is the wiring method recommended by Digitrax for safety reasons & also because it makes detection work more prototypically. Power district is the power wiring, track, components and equipment attached to that wiring, driven by a single properly isolated booster. The track for a power district ...

KB60 BDL168 - Connecting two RX4's

The BDL168 manual states that 2 RX4's can be connected but it only shows how to connect one of them on Aux 2. How is the second RX4 connected? The RX4 is a 4 Zone Transponding Receiver Add-on for BDL16 series occupancy detectors. Each RX4 is made up of 4 RX1 sensors, a ribbon cable and a connector that lets you plug the unit into a BDL16-series detector. The earlier BDL16 and BDL162 occupancy detectors had the capacity for hosting one RX4. BDL16 & BDL162 boards are labeled with AUX1 & AUX2. Only the AUX2 connection should be used for ...

KB61 BDL168 - Using two boosters

Is it possible to connect my BDL168 across two power districts (Boosters). I envisage using zone 1 & 2, with detection sections 1-8 one one booster (DCS100), with zones 3 & 4, with detection sections 9-16 on another booster (DB150). Will this work? Please refer to the chart below: Note that Pins 1 & A, 6 & F, 13 & P, and 18 & V are identified as "Connection to Booster for Zone *. Each Zone can support up to four detection sections. So, for your application, the DCS100 would be connected to Pins 1 & A and 6 & ...

KB67 BDL168 - Setting Up Board ID

When the BDL168 is connected to LocoNet, it will communicate coded detection information to the system. If you wish to report BDL168 status to LocoNet and attached devices or computers that can interpret these messages, you will probably want to set up a unique board address for each BDL168. This is done so that the BDL168 Board ID does not conflict with the Board ID of other devices on the railroad. Board addresses can range from 01 to 999. It is recommended that you make a record of the addresses you use for all devices connected to your layout. Setting ...

KB588 BDL168 - LT5 Tester

There was an error In the BDL168 Instruction Sheet, Figure 6 on Page 19.  The LT5 diagram was incorrect.  This article shows the correct LT5 Detection Sections.  The current on-line version of the BDL168 Instruction Sheet has been corrected. Each BDL168 comes with an LT5 that will help you with layout wiring and troubleshooting for transponding & detection. The LT5 plugs onto the LED header connections of BDL168 and the LEDs on the LT5 light when detection sections are occupied. The status of power to each zone is also shown. In service, the LT5 is plugged in to one of ...

KB594 Is Digitrax signaling and detection equipment compatable with other DCC systems?

Q: I have a Lenz Set 100 and was wondering if I can use my DCC system and use the Digitrax signaling and detection components. What about other DCC systems?A: Yes, Digitrax detection and signaling will work with any DCC system.  You will need to install a LocoNet network for the LocoNet components to communicate with each other and use a PR3 or MS100 to interface with a computer running software such as Railroad and Co. 

KB596 Automatic Reversing and Turnout Control

Q: How do I use the AR1 and automatically control the turnout? I'm confused here. It is good that the AR1 controls the switching of the track power for a reverse loop automatically but it seems the turn out direction also needs auto control. Am I missing something here? Need help understanding...Please explain. A: The AR1 is handles correcting the track polarity mismatch when a reversing section is encountered by a locomotive. When the polarity inside the reverse section does not match the polarity outside the reverse section, the AR1 detects the short circuit and flips the polarity so that ...

KB482 LT5 and BD4 Block Monitor Modules

Q:  What are the differences and similarities between the LT5 module that is included as part of the BDL168 package and the Block Monitor module that is included as part of the BD4 package? A:  These two devices are for all practical purposes interchangeable. Similarities – They use the same electronic schematic. Differences – They use different leds and different display configurations. The LT5 that comes with BDL168 has 5 red LEDs, four on the top row, and one on the bottom row. The Block Monitor that comes with BD4 has of 5 green LEDs in a single row.  Either module can ...

KB230 BDL168 - Power Districts and Transponding

Is it possible to add a pair of PM42 Power Management Modules between the command station Rail A/Rail B outputs and run the resulting output from the PM42's on as many as 8 sets of Rail A/Rail B Wires to 8 isolated power Zones? These isolated power zones could have their Common Zone (Rail A) Wires running through RX1 transponding receivers connected to an RX4 ribbon cable running to the BDL168 for the purpose of interfacing with the SurroundTraxx Multi-Train Sound System. If this is possible, it would only require 5-6 of the DS lines on the BDL168 to be ...